Diagnostic and Prediction of Alzheimer’s disease:
Selection of Useful Features
Using Machine Learning

Giovana Gavidia, Cécilia Damon, Eduardo Soudah and Marine Depecker

The International Center for Numerical Methods in Engineering,
Building C1, Campus Norte UPC C/ Gran Capitán S/N 08034 Barcelona, Spain
{ggavidia,esoudah}@cimne.upc.edu
http://www.cimne.upc.edu

Abstract. In this work, we focused in the features selection based in morphological, demographic and neuropsychological biomarkers to the diagnosis and prognosis of Alzheimer disease (AD). The main objective was to propose efficient methods to select these features and construct predict models from that in order to predict the degree of dementia of a patient based on its neuroimaging data and medical record (medical history, demographic, cognitive and clinical information). Another key issue was to build a robust methodology based on these prediction methods and leading to easy-to-interpret models for helping further neuroscientific interpretation. Indeed, the detection of new neuroimaging markers is crucial to improve the understanding of the emergence and evolution of the disease, but also the drug impact on the patients.

Keywords: Neuroimaging, biomarkers, Alzheimer’s disease, Support vector machine, predictor model, MRI, mild cognitive impairment, diagnostic marker

1 Introduction

La identificación de factores claves para el diagnóstico de demencia del tipo Alzheimer resulta una de los principales avances conseguidos en el área de la neurología. El continuo descubrimiento de nuevas variables de diagnóstico y predicción basadas en algún tipo de biomarcador, presenta oportunidades y retos para los estadísticos y clínicos a la hora de evaluar su influencia en el desarrollo de esta enfermedad. Por este motivo, diversas recomendaciones han surgido desde algo más de 25 años, a partir de que el primer caso de AD fue descrito por [1], las cuáles han tratado de abordar principalmente: (1) la confiabilidad de los criterios de diagnóstico actuales,(2) su capacidad para establecer un diagnóstico confiable en la evaluación de las personas mayores, (3)la capacidad de las pruebas de laboratorio para mejorar el diagnóstico clínico.

Demonstrating the correlation between a set of observed variables and the degree of dementia of a patient is not enough. Indeed, it is well-known that
a simple search and classification of all relevant variables may yield low performances for building a good predictor, in particular if the variables are redundant. Therefore, extracting a subset of useful variables may be more efficient. In what follows, we propose a data-driven method to automatically discriminate between patients with AD (sAD) and elderly control subjects (sC); and discriminate between patients with MCI converted to AD (sMCIc) and patients with MCI no converted to AD (sMCInc).

In this study we applied a approach based on the useful features selection (morphological and clinical features) according to their degree of significance to discriminate between the 4 subject classes mentioned above and the construction of SVM-based diagnostic and prediction models from them.

Los resultados obtenidos durante la etapa de selección de las mejores variables predictoras así como el desempeño de ambos modelos en la clasificación clínica de los datos durante la etapa de test, son prometedores. Por un lado, el subconjunto de variables seleccionadas tienen correlación con los resultados de investigaciones previas [2,3,4]. Asimismo, los resultados en la clasificación clínica realizada por los modelos durante el test, demostraron que ambos modelos son de gran utilidad para el diagnóstico temprano de AD y la predicción de conversión hacia esta enfermedad, siendo capaces de discriminar sujetos con AD de sujetos sanos (diagnóstico) y distinguir a los sujetos MCI que se convertirán a AD de los que no se convertirán (predicción) con porcentajes de exactitud superiores al 80%, en ambos casos. Asimismo, estos resultados nos permite afirmar que la metodología utilizada en esta investigación para el análisis y determinación del subconjunto de variables de mayor significancia en el diagnóstico de demencia ha sido eficiente.

2 Materials

2.1 Data

Data used in the preparation of this article were obtained freely from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI, which has addressed the major health problem of AD and including neuroimaging and clinical data of hundreds of subjects. From this database, two cohort were obtained: the first cohort of 832 participants (“training and validation cohort”) and the second cohort of 747 participants (“test cohort”), were selected according the cross-sectional and longitudinal session images, respectively. ADNI is a large multi-site collaborative effort launched in 2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private pharmaceutical companies and non-profit organizations as a public-private partnership aimed at testing whether serial cross-sectional and longitudinal neuroimaging biomarkers from structural MRI and positron emission tomography (PET), genetic factors, psychometric scores, cerebrospinal uid (CSF) markers, and other variables, such as, biological markers and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early Alzheimers disease. The
study aimed to enroll subjects recruited from over 50 sites across the United States and Canada, where 400 subjects with early mild cognitive impairment (MCI), 200 subjects with early AD, and 200 normal control subjects. ADNI has been used by a great number of publications; a recent review has been published by Weiner and colleagues in Alzheimer & Dementia journal. Details about the acquisition of structural MRIs of the participants can be found in “ADNI project site” (http://adni.loni.ucla.edu/about-data-samples/image-data). Procedures for selection of participants and the full study protocol have been presented in [5,6].

2.2 MRI Acquisition

For ADNI cohorts, structural MRI scans were acquired from 1.5T scanners at multiple sites. MRI protocols ensured comparability across a variety of scanners (Siemens, Erlangen, Germany). T1-weighted volumetric MP-RAGE scans were collected for each subject and the raw DICOM image and pre-processed images are available at http://adni.loni.ucla.edu/. ADNI incluye adquisiciones múltiples de imágenes de MRI estructural (entre 2 y 4 imágenes por sesión) de adultos, con edades de 18-96, las cuales han sido utilizadas previamente en diversas investigaciones [7,8,2,9,10,11,4,12,3,13,14] dedicadas al desarrollo de biomarcadores basados en neuroimagen para el diagnóstico y predicción de demencia tipo AD. Los participantes se sometieron a evaluaciones de intervalos de 6 meses en 2 años para pacientes con DA leve y de 3 años para los sujetos de control y los pacientes con MCI. Cada visita estuvo asociada a evaluaciones con imágenes médicas etiquetadas como: Screen (sc), baseline (base), month 6 (m06), month 12 (m12), month 18 (m18), month 24 (m24), month 36 (m36) y month 48 (m48). Mayor detalle sobre la adquisición de MRIs estructurales de los participantes puede ser encontrada en [15] y “ADNI project site” (http://adni.loni.ucla.edu/about-data-samples/image-data).

2.3 ADNI cohorts

Participants were selected from the ADNI database if they satisfy following conditions: (1) Subjects with cross-sectional and longitudinal MR images correctly processed and (2) subjects with complete demographic and neuropsychological data (at least in the first visit) available at the time of the study (June 2011). A subject classification variable (output variable) was constructed according to the eligibility criteria used by ADNI (http://www.adni-info.org/Scientists/ADNIGrant/ProtocolSummary.aspx). As result, a total of 605 subjects were selected and clinically classified as: subjects older controls (sC) (n=166), subjects whith AD (sAD) (n=145) and subject MCI (sMCI) (294). In table 1 are described the main characteristics for each subject class.

A first analysis of the classification variable for each participant has shown that some subjects firstly labeled as sC, could also be classified as sMCI on a subsequent visit. In the same way, some subjects diagnosed as sMCI, have been diagnosed as sAD at some later visit, and in other cases not. Both events can be
Table 1. Clasificación de sujetos en el grupo de entrenamiento (ADNI) según sus características clínicas

<table>
<thead>
<tr>
<th>Caso</th>
<th>Características Clínicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sujetos de control (sC)</td>
<td>Sujetos normales con valores de Mini-Mental State Examination (MMSE) [16] entre 24 y 30 (inclusive), un índice de Clinical Dementia Rating (CDR) [17] de 0, y calificados como no depresivos, no MCI y no dementes</td>
</tr>
<tr>
<td>Sujetos con MCI (sMCI)</td>
<td>Pacientes MCI tienen un índice MMSE entre 24 y 30 (inclusive), reportan síntomas de problemas con la memoria, dificultades con la memoria objetiva, un CDR de 0.5, ausencia de niveles significativos de deterioro en otros dominios cognitivos, preservan las actividades esenciales de su vida diaria y poseen ausencia de demencia</td>
</tr>
<tr>
<td>Subjects with AD (sAD)</td>
<td>Pacientes con Alzheimer tienen un índice de MMSE entre 20 y 26 (inclusive), un índice de CDR de 0.5 o 1.0, y reúnen criterios del National Institute of Neurological and Communicative Diseases and Stroke Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) [18] para probable caso AD.</td>
</tr>
</tbody>
</table>

explained by the fact that the diagnosis of MCI and AD is progressive. In some cases, subjects can be classified as sC and be developing the disease without showing symptoms, and even patients with MCI may progress to AD or not. For these reasons, we have decided to label as sMCIc the subjects with MCI who subsequently have converted to AD and as sMCInc, the MCI subjects who did not become AD.

As result, we have decided to split the ADNI cohort in 4 completely different diagnostic groups, in order to facilitate the training, validation and testing of the diagnostic and prediction models. Thus, groups have been obtained and conveniently labeled for reference data in this study:

1. **sC\(sA\)D\(_{\text{train}}\)**: Training and validation group formed by the corresponding sAD to sC and morphological variables including cross-sectional MRIs, consisting of 1299 instances (631 instances corresponding to 216 control subjects (sC) and 634 instances corresponding to 287 subjects with mild AD (sAD));
2. **sMCI\(_{\text{train}}\)**: Training and validation group consisting of 1350 instances classified as sMCI, corresponding to 490 patients. This data include morphological variables calculated from cross-sectional MR images. In this case, 224 subjects originally labeled as sMCI, are also labeled as sC or sAD, in previous or subsequent visits. For this reason, we have decided to label as sMCInc the
subjects with MCI who subsequently have converted to AD and as sMCInc, the MCI subjects who did not become AD.

3. $sCsAD_{test}$: Test group formed by sAD and sC subjects, consisting of 1163 instances (757 instances of 224 control subjects (sC) and 406 instances corresponding to 224 subjects with mild AD (SAD)). This data only include longitudinal MR images.

4. $sMCI_{test}$: Testing group of 1200 instances classified originally as sMCI. In this case, original instances labelled as sMCI have been classified as sMCInc (patients with MCI who had subsequently converted to AD) and sMCInc (patients with MCI who did not become AD). This data only include longitudinal MR images.

3 Methods

3.1 Overview of Methodology

Our data-driven approach is composed of the following main steps. First, we perform feature selection within ADNI cohort, in order to identify those automated measures that best discriminate MCI subjects from control subjects and to identify the most characteristic structural AD-like patterns which could be looked for in MCInc and MCInc individuals. From the pool of available features of ADNI database, some features are sensitive and relevant to AD, but some features are less relevant or redundant for classification. Therefore, this procedure, not only helps to improve the accuracy of the results, but is also very useful for visualization and interpretation of data, reducing the measurement and storage requirements, reducing training time and improving the prediction performance. Basically, the process consists in selecting a subset of most useful variables while eliminating redundant ones, based on training, validation and test data. Selection step is based on the combination of two approaches: a ranking features method with the features selection methods, itself. In the first approach, a filter method defined as a preprocessing step is applied in order to classify and sort the features before the selection step. In the second approach, two SVM-based methods and the combination of them are applied in order to select the more useful features to diagnose and predict AD: F-value from LIBSVM library and a Wrapper method based on the modification of SVM algorithm. Both methods are closely related to the SVM classifiers and it is used to select useful features. Finally, the diagnostic and prediction models are designed considering the select features. For this, the 4 groups are used to train, validation and test the SVM-based models. In the figure 1 is shown the process implicated in our approach.

Fig. 1. Overview of methodology to select useful features and to contruct the diagnostic and predictor models.
3.2 Using Machine Learning Algorithms in dementia

Lás máquinas de soporte vectorial o maquinas de vectores de soporte (Support Vector Machine SVMs) son un conjunto de algoritmos de aprendizaje supervisado desarrollados por [?]. SVM es una técnica útil para clasificación de datos, y en algunos casos, su utilización ha sido considerada más fácil que las ANNs. Una mayor descripción sobre SVM y sus diferencias con las ANNs puede ser encontrado en [19,20,21]. En resumen, este clasificador se describe como: dado un conjunto de entrenamiento de tamaño K: $(x_k, y_k)_{k=1..K}$, donde x_k en R^d son observaciones o instancias, y y_k en 0,1 (o $(-1,1)$ son las etiquetas de salida correspondientes (targets), SVM busca un hiperplano o conjunto de hiperplanos proyectados en un espacio de dimensionalidad muy alta (o incluso infinita) que tenga la máxima distancia (margen) con los puntos que están cerca de los puntos de una clase de la de otra. En ese concepto de "separación pría" es donde reside la característica fundamental de las SVM. De esta forma, los puntos del vector que están etiquetados con una categoría estaran a un lado del hiperplano y los casos que se encuentren en la otra categoría estaran al otro lado.

3.3 Dementia Features Obtention

For each group of training, validation and test cohort, the initial data included 323 features (input variables): 6 clinical features (4 demographic variables and 2 neuropsychological variables), 317 morphological variables; and 1 clinical classification label as output variable.

Clinical Feature Collection. Estudios dedicados al progreso de la vejez, así como enfermedades del tipo MCI, AD y otros tipos de demencia, destacan un especial interés por analizar la influencia de las características socio-demográficas en el deterioro cognitivo y el desarrollo de Alzheimer [22,23,24,25,26,16]. Estos estudios sumados a otras investigaciones han demostrado la influencia de estos factores sobre el deterioro cognitivo. En este estudio fueron incluidas inicialmente como variables demográficas: el sexo, edad, años de educación y Handedness (tipo de escritura), las cuales fueron documentadas en la primera visita de los participantes (screen visit). Las diferencias entre estas variables fue testeadas en los cuatro grupos sin encontrarse diferencias significativas en la edad, sexo y años de educación. Asimismo, se observó que todos los participantes son de tipo de escritura diestra por lo cual se decidió eliminar esta variable de nuestro estudio. Estas cuatro variables demográficas han sido consideradas en otras investigaciones de AD realizadas sobre base de datos obtenidas de ADNI [27,4,13] y otras fuentes.

Con respecto a las variables neuropsicológicas, sólo fueron incluidas las variables MMSE y CDR [17] documentadas por ADNI en cada una de las visitas de los participantes, las cuales han sido utilizadas para construir la variable de
la salida de los modelos, ver tabla 1. Las diferencias de las características neuropsicológicas fue testeada en los cuatro grupos, encontrándose diferencias significativas en ambas variables.

En la tabla 2 se presenta con detalle las variables clínicas de los participantes ADNI considerados en este estudio.

Table 2. Clinical characteristics of subjects included in training, validation and testing groups

<table>
<thead>
<tr>
<th></th>
<th>Training and validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sC</td>
<td>sMCInc</td>
</tr>
<tr>
<td>N sujetos</td>
<td>216</td>
<td>223</td>
</tr>
<tr>
<td>M instancias</td>
<td>631</td>
<td>675</td>
</tr>
<tr>
<td>Age(first visit)</td>
<td>78.68 ± 5.35</td>
<td>77.74 ± 7.36</td>
</tr>
<tr>
<td>% Female</td>
<td>46.76</td>
<td>33.63</td>
</tr>
<tr>
<td>% Male</td>
<td>53.24</td>
<td>66.37</td>
</tr>
<tr>
<td>Education(years)</td>
<td>15.93 ± 2.83</td>
<td>15.64± 3.11</td>
</tr>
</tbody>
</table>

Morphological Feature Collection. En este trabajo fueron considerados cinco tipos de mediciones, según la clase de ROI cerebral analizada: *Cortical thickness average* (TA), *Cortical thickness standard deviation* (TS), *Surface area* (SA) y *Cortical volume* (CV) calculados para la zona neocortical; y el no-neocortical calculado para la zona no-neocortical. Asimismo, con el fin de conocer las diferencias en el tamaño del cerebro de cada sujeto y analizar el grado del atrofia cerebral, fue incluido el volumen intercerebral total de cada sujeto (eTIV: cortical intracranial volume) [28], calculado en ADNI utilizando Freesurfer. La fiabilidad de las técnicas de medición del espesor cortical aplicadas, así como los detalles técnicos de los procedimientos de análisis de imagen realizados con Freesurfer han sido demostradas en anteriores investigaciones [29,30,31,32,33,34,35,36,37,38,14,13]. Asimismo, Freesurfer ha sido utilizado en investigaciones dedicadas a obtener biomarcadores morfológicos del cerebro para el diagnóstico de AD y MCI [3,9,36,2,7,37,38,14,13].

Una colección de 317 mediciones correspondientes a la zona cortical y subcortical de 34 ROIs del cerebro fueron consideradas inicialmente para los cuatro grupos de estudio 1. En las tablas 6 y 7 de la sección 6.3 son presentadas las 317

1 Para las obtención de estas variables se tuvo en cuenta sólo a aquellas mediciones morfológicas que estuviesen presentes en grupos sCsAD_train, sMCI_train, sCsAD_test.
variables morfológicas inicialmente incluidas en este estudio. En la siguiente etapa, un subconjunto de esta colección inicial sería seleccionado en base a su grado de significancia en el diagnóstico entre sujetos sC y sAD, y la discriminación entre sujetos sMC1e y sMC1nc.

Basicamente, en el estudio realizado por ADNI, el conjunto de mediciones morfológicas fueron calculadas a partir de las MRIs estructurales de los tipos transversal y longitudinal, las cuales fueron obtenidas en las diferentes visitas de los participantes. El análisis morfológico consistió en aplicar un flujo-grama de rutinas de procesamiento sobre las imágenes de MR para obtener automáticamente mediciones de zonas o regiones de interés (ROIs) del cerebro. Para este fin, utilizaron el software libre de análisis de imagen Freesurfer [39], el cual ha sido desarrollado por Martinos Center for Biomedical Imaging y está documentado y libremente disponible en ‘Freesurfer wiki site’ (http://surfer.mni.mgh.harvard.edu/fswiki). Utilizando Freesurfer, los ROIs del cerebro fueron obtenidos mediante la segmentación de la materia blanca subcortical y estructuras volumétricas profundas de la materia gris (incluyendo el hipocampo, la amigdala, ncleo caudado, putamen y los ventriculos) [30,31]; y la parcelación de la corteza cerebral en regiones basadas en las zonas gyral y suncal [40,31,41,39], entre otros métodos. Para mayor detalle de las técnicas de procesamiento utilizadas y el análisis aplicado sobre las imágenes neurológicas para la obtención de las mediciones o biomarcadores morfológicos, ver “ADNI project site” (http://adni.loni.ucla.edu/about-data-samples/image-data).

3.4 Preprocessing and Features Ranking

The features ranking step is defined as a preprocessing step to classify and sort the features according to their degree of discrimination, it evaluates all of the features by looking at the intrinsic characteristics of the data with respect to clinical diagnostic. Before applying this method, we linearly normalize all the features of training-validation and testing groups to the range between 0 and 1, since features have different scales. We then employ the minimum redundancy and maximum relevance (mRMR) filter method introduced by Ding and Peng [7,42], which computes the mutual information of two variables based on their probabilistic density function.

Los resultados completos del ranking de variables morfológicas y clínicas son presentados en el apéndice 6.3, tabla 8 y tabla 9, respectivamente. Obsérvese que la variable CDRGLOBAL, ubicada en el primer lugar del ranking de variables clínicas, alcanzó el valor de AUC igual a 0.98. Por otro lado, la variable Volume(WMParcellation)ofLeftHippocampus(ST29SV) ubicada en el octavo lugar del ranking alcanzó la mayor puntuación de AUC igual a 0.8860, superando a la variable Cortical Thickness Average of LeftEntorhinal(ST24TA), ubicada en el primer lugar del ranking, la cual alcanzó AUC menor de 0.87.

y sMC1nc; siendo descartadas las mediciones de los ROIs etiquetados como “Unknown” o con valores nulos
3.5 Features Selection

The second step approach was the application of features selection methods based on SVM, which chooses important features (it removes irrelevant or unimportant features before classifiers begin to work) as well as conducts training/testing. This procedure was applied on the sorted variables in order to evaluate the effectiveness of the subset by the accuracy of its classification and to select the best variables. SVM have been an effective technique for data classification. Not only it has a solid theoretical foundation, but practical comparisons have also shown that SVM is competitive with existing methods such as neural networks and decision trees. However, SVM does not provide directly the relevance of the variables; it thus should be supplemented with other functions, which are commonly called methods wrapper.

In this study, the selection of features has been applied using two SVM-based methods and the combination of both: The F-Score value and SVM wrapper method. The utilization of both methods is accepted as a recommended technique for feature selection procedures [43].

F-Score value. The F-Score value implemented into the LIBSVM package, which is a library for SVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm). F-score (Fisher score) is a simple and effective criterion to measure the discrimination between a feature and the label. Based on statistical characteristics, it is independent of the classifiers and a larger F-score indicates that the feature is more discriminative [Chan and Lin, 2008; Chan and Lin, 2011].

SVM Wrapper Method. In this case, we have employed the classifier based on Support vector machines (SVM) by incrementally adding features based on their ranking (highest to lowest).

Combination of F-Score and SVM Wrapper Methods. F-Score + SVM Wrapper, which is the combination of both methods above mentioned. De este modo, el método SVM wrapper fue aplicado sobre las variables previamente seleccionadas con la librería F-score. Asimismo, en cada paso del algoritmo, el criterio de inclusión o exclusión de una variable se basó en la máxima exactitud de clasificación del modelo al ser entrenada y testead con dicha variable.

Como resultado de la aplicación de los tres métodos de selección, fueron obtenidos seis subconjuntos de variables distintos con los cuales fueron construidos modelos de diagnóstico auxiliares para la evaluación del desempeño de las variables seleccionadas. Finalmente, la selección definitiva del subconjunto de variables fue realizada evaluando el número de veces que fueron seleccionadas cada una de las variables; así como los indicadores estadísticos de exactitud, precisión, sensibilidad, sensitividad y AUC calculados para cada uno de los modelos auxiliares, los cuales son listados a continuación:

1. Modelo 1: \texttt{vMRI_Wrapper}, construido con un subconjunto de 90 variables morfológicas seleccionadas con el método SVM Wrapper.
2. Modelo 2: \(vMRI_{Fscore}\), construido con subconjunto de 159 variables morfológicas seleccionadas con el método Fscore.

3. Modelo 3: \(vMRI_{FscoreWrapper}\), construido con un subconjunto de 74 variables morfológicas seleccionadas con la combinación de los métodos Fscore y SVM Wrapper.

4. Modelo 4: \(vDEM_{vNS_{Wrapper}}\), construido con el conjunto original de 6 variables clínicas (demográficas y neuropsicológicas) seleccionadas con el método SVM Wrapper.

5. Modelo 5: \(DEM_{vNS_{Fscore}}\), construido con un subconjunto de 3 variables clínicas (demográficas y neuropsicológicas) seleccionadas con el método Fscore.

6. Modelo 6: \(vDEM_{vNS_{FscoreWrapper}}\), construido con un subconjunto de 3 variables clínicas (demográficas y neuropsicológicas) seleccionadas con la combinación de los métodos Fscore y SVM Wrapper.

3.6 Discrimination between obtained features subsets

Con la aplicación de las tres técnicas de selección de variables se obtuvieron resultados distintos por lo que fue necesario definir algún criterio de discriminación entre ellos. Por un lado, analizando las variables seleccionadas, con cada una de las técnicas se consiguió reducir el número de variables originales, eliminando las menos discriminativas y redundantes en la clasificación de sujetos con AD y sujetos de control. Asimismo, se observó que existían variables que habían sido seleccionadas más de una vez y otras que no fueron seleccionadas por ningún método.

Por otro lado, analizando los indicadores estadísticos (Exactitud, precisión, sensibilidad, especificidad y AUC) calculados sobre cada matriz de confusión de los seis modelos auxiliares construidos, los resultados fueron muy óptimos en todos los casos a pesar de las pequeñas diferencias. En la tabla 3 se resumen estos resultados. Al respecto, consideramos que en este tipo de clasificación basada en el diagnóstico clínico, los cinco indicadores resultan muy útiles por combinar la sensibilidad y especificidad de los modelos en la discriminación de las instancias sC de las sAD, así como de las instancias sMCInc de las sMClc. Describiendo los peores resultados en la selección de variables morfológicas, la calificación más baja fue obtenida por el modelo \(vMRI_{Fscore}\) con 159 variables, en cuyo caso sólo FP (falsos positivos) igual a 38 y FN (falso negativos) igual a 0. Asimismo, analizando los tres subconjuntos de variables clínicas, los resultados más bajos fueron obtenidos por el modelo \(vDEM_{vNS_{Wrapper}}\) con tan solo FP igual a 18 y FN igual a 6.
A partir de estos primeros resultados, fue necesario evaluar detalladamente cada modelo y subconjunto de variables a fin de establecer un criterio definitivo de elección de las variables predictoras. Este criterio se basó en calificar cada una de las 324 variables originales de acuerdo al número de veces que fue seleccionada, siendo incluidas finalmente sólo aquellas variables morfológicas y clínicas seleccionadas a la vez por los tres enfoques. Como resultado, el subconjunto quedó definido de la siguiente manera: i) Subconjunto conformado por 24 variables morfológicas y ii) Subconjunto conformado por 6 variables clínicas. En la tabla 4 se presentan las 27 variables seleccionadas con sus respectivos valores AUC y en la figura 2 se presenta gráficamente las curvas ROC de cada una de estas variables. Obsérvese que la mayoría de las variables seleccionadas presentan una curva ROC aceptable, por encima de la línea diagonal, con valores $AUC > 0.6$, salvo las variables CorticalThicknessAverageofRightRostralAnteriorCingulate(ST113TA) y Educacion(PTEDUCAT), las cuales tienen $AUC \leq 0.6$.

4 Classification based on SVM

Después de seleccionar el subconjunto de variables predictoras, el siguiente paso fue la construcción de dos modelos basados en SVM: el primero para el diagnóstico de AD y el segundo para la predicción de los pacientes MCI que se convertirán a AD. El entrenamiento y validación de ambos modelos fue realizado utilizando los cuatro grupos considerando únicamente las 27 variables seleccionadas.

En nuestro estudio, cada instancia K del conjunto de entrenamiento estuvo asociada a un valor de salida o target value y_k (clasificación clínica) y un conjunto de 27 atributos de entrada denominados variables predictoras (features o inputs). Los clasificadores SVM fueron implementados utilizando la herramienta LIBSVM [44] con...
Table 4. Final subset of 27 features selected by the three applied methods

<table>
<thead>
<tr>
<th>N</th>
<th>Variable Code</th>
<th>Variable Name</th>
<th>Variable Type</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PTEDUCAT</td>
<td>Years of education</td>
<td>Clinical</td>
<td>0.58105</td>
</tr>
<tr>
<td>10</td>
<td>ST103CV</td>
<td>Volume (Cortical Parcellation) of RightParahippocampal</td>
<td>Morphologica</td>
<td>0.75419</td>
</tr>
<tr>
<td>22</td>
<td>ST106CV</td>
<td>Volume (Cortical Parcellation) of RightParsTriangularis</td>
<td>Morphologica</td>
<td>0.60197</td>
</tr>
<tr>
<td>36</td>
<td>ST109TA</td>
<td>Cortical Thickness Average of RightPosteriorCingulate</td>
<td>Morphologica</td>
<td>0.69727</td>
</tr>
<tr>
<td>50</td>
<td>ST113TA</td>
<td>Cortical Thickness Average of RightRostralAnteriorCingulate</td>
<td>Morphologica</td>
<td>0.59867</td>
</tr>
<tr>
<td>56</td>
<td>ST115CV</td>
<td>Volume (Cortical Parcellation) of RightSuperiorFrontal</td>
<td>Morphologica</td>
<td>0.6412</td>
</tr>
<tr>
<td>58</td>
<td>ST115TA</td>
<td>Cortical Thickness Average of RightSuperiorFrontal</td>
<td>Morphologica</td>
<td>0.75385</td>
</tr>
<tr>
<td>82</td>
<td>ST125V</td>
<td>Volume (WM Parcellation) of RightVentralDC</td>
<td>Morphologica</td>
<td>0.62266</td>
</tr>
<tr>
<td>83</td>
<td>ST125V</td>
<td>Volume (WM Parcellation) of ThirdVentricle</td>
<td>Morphologica</td>
<td>0.64207</td>
</tr>
<tr>
<td>89</td>
<td>ST125V</td>
<td>Volume (WM Parcellation) of LeftAmygdala</td>
<td>Morphologica</td>
<td>0.80552</td>
</tr>
<tr>
<td>94</td>
<td>ST133V</td>
<td>Volume (Cortical Parcellation) of LeftHimanssts</td>
<td>Morphologica</td>
<td>0.70456</td>
</tr>
<tr>
<td>96</td>
<td>ST135TA</td>
<td>Cortical Thickness Average of LeftHimanssts</td>
<td>Morphologica</td>
<td>0.75163</td>
</tr>
<tr>
<td>110</td>
<td>ST124CV</td>
<td>Volume (Cortical Parcellation) of LeftEntorhinal</td>
<td>Morphologica</td>
<td>0.83025</td>
</tr>
<tr>
<td>119</td>
<td>ST124TA</td>
<td>Cortical Thickness Average of LeftEntorhinal</td>
<td>Morphologica</td>
<td>0.87841</td>
</tr>
<tr>
<td>123</td>
<td>ST25TA</td>
<td>Cortical Thickness Average of LeftFrontalPole</td>
<td>Morphologica</td>
<td>0.65755</td>
</tr>
<tr>
<td>132</td>
<td>ST308V</td>
<td>Volume (WM Parcellation) of LeftInferiorLateralVentricle</td>
<td>Morphologica</td>
<td>0.82674</td>
</tr>
<tr>
<td>143</td>
<td>ST341TA</td>
<td>Cortical Thickness Average of LeftIsahmuncingulate</td>
<td>Morphologica</td>
<td>0.74766</td>
</tr>
<tr>
<td>147</td>
<td>ST351TA</td>
<td>Cortical Thickness Average of LeftLateralOccipital</td>
<td>Morphologica</td>
<td>0.68428</td>
</tr>
<tr>
<td>153</td>
<td>ST375V</td>
<td>Volume (WM Parcellation) of LeftLateralVentricle</td>
<td>Morphologica</td>
<td>0.70682</td>
</tr>
<tr>
<td>208</td>
<td>ST52TS</td>
<td>Cortical Thickness Standard Deviation of LeftPrecuncus</td>
<td>Morphologica</td>
<td>0.65981</td>
</tr>
<tr>
<td>228</td>
<td>ST351TA</td>
<td>Cortical Thickness Average of LeftSuperiorTemporal</td>
<td>Morphologica</td>
<td>0.804</td>
</tr>
<tr>
<td>234</td>
<td>ST355V</td>
<td>Volume (WM Parcellation) of LoruscolatumMedPosterior</td>
<td>Morphologica</td>
<td>0.66274</td>
</tr>
<tr>
<td>268</td>
<td>ST805V</td>
<td>Volume (WM Parcellation) of RightChoroidPlexus</td>
<td>Morphologica</td>
<td>0.64303</td>
</tr>
<tr>
<td>279</td>
<td>ST837TA</td>
<td>Cortical Thickness Average of RightEntorhinal</td>
<td>Morphologica</td>
<td>0.86705</td>
</tr>
<tr>
<td>283</td>
<td>ST855TA</td>
<td>Cortical Thickness Average of RightFusiform</td>
<td>Morphologica</td>
<td>0.79982</td>
</tr>
<tr>
<td>323</td>
<td>MMSCORE</td>
<td>Mini Mental Examination Score (MMSE)</td>
<td>Clinical</td>
<td>0.86811</td>
</tr>
<tr>
<td>324</td>
<td>CDGLOBAL</td>
<td>Global Clinical Dementia Rating (CDR)</td>
<td>Clinical</td>
<td>0.87773</td>
</tr>
</tbody>
</table>
Fig. 2. ROC curve of final selected features from $sCsAD_{train}$ data
el kernel Gaussian radial basis function (RBF); asimismo los datos utilizados correspondieron a los cuatro grupos creados, los cuales fueron preprocesados previamente, ver sección ?? [45] presenta una fácil introducción a LIBSVM, detallando los pasos para preprocesar los datos, la selección del modelo utilizando el kernel RBF, así como sus beneficios y desventajas.

Los contrucción de los modelos finales implicó seis procesos principales, como se presenta en la figura 3.

Fig. 3. Overview of steps applied to construct the classification models

4.1 Preprocesamiento de los datos

La etapa de preprocesamiento consistió en tres procesos fundamentales aplicados a los datos de los cuatro grupos clínicos sCsAD\textsubscript{train}, sCsAD\textsubscript{test}, sMCI\textsubscript{train} y sMCI\textsubscript{test} obtenidos de ADNI. En la sección 3.4 se describió con detalle esta etapa.

4.2 Selección del kernel de modelo SVM

En esta etapa se determinó el tipo de problema de clasificación a resolver y la función kernel más adecuada para este problema. Analizando la tarea de clasificación de los sujetos sAD de los sCS y de los sMCIC de los sMCIC en los cuatro grupos, se identificó que el problema prácticamente no presenta una separación lineal de las clases, por lo que fue abordado como un problema no-lineal. Con respecto a la selección del la función kernel, fueron estudiados los tipos más utilizados, dentro de los cuales tenemos: lineal, polinomial, radial y sigmoid. Con este fin, analizando las características de tamaño de los datos y el comportamiento de las variables con respecto al target, se determinó que en ambos grupos de entrenamiento y validación (sCsAD\textsubscript{train} y sMCI\textsubscript{train}), el número de instancias era mucho mayor que el número de variables (1265 y 894 instancias respectivamente con 27 variables). Partiendo de estas características, se estableció que la función kernel radial basic function (RBF) kernel se ajustaba mejor a nuestro problema. El kernel RBF, toma la forma de la ecuación 1:

$$K(x_i, x_j) = e^{-\gamma\|x_i-x_j\|^2}$$

(1)

donde γ es el único parámetro del kernel.

Asimismo, existen otras razones que justifican la selección de este kernel con respecto a los otros tipos existentes. Por un lado, RBF mapea no-linealmente las muestras sobre un espacio de dimensiones grandes (recomendado para un número de variables pequeño), lo cual, a diferencia del kernel de tipo lineal, permite manejar satisfactoriamente los datos que poseen una relación no-lineal entre los inputs (variables d entrada) y los targets. Por otro lado, investigaciones han demostrado que el kernel RBF abarca (y en algunos casos supera) las funcionalidades de los otros kernels, por lo que es recomendable su selección como primera opción. Al respecto, [46] ha demostrado que RBF es un caso especial del kernel lineal con un parámetro adicional, [47] demostró que RBF alcanza el mismo rendimiento que el kernel sigmoid cuando el rango de ciertos parámetros son modificados, por otro lado, RBF presenta menos dificultades que el
4.3 Búsqueda de los mejores parámetros de configuración de los modelos SVM.

La efectividad de la clasificación utilizando SVM depende de la selección de una función kernel adecuada y sus parámetros, así como un margen adecuado para C. Esta etapa consistió en encontrar los mejores valores a los parámetros C y γ, los cuales serían utilizados para la construcción de los modelos finales. La mejor combinación de C y γ es usualmente seleccionada utilizando una red de búsqueda (grid-research) con secuencias de crecimiento exponencial para C y γ. Para este fin, cada combinación de opciones de estos parámetros fue comprobada utilizando el algoritmo de validación cruzada (cross-validation). Este algoritmo fue implementado en MATLAB y utilizó la librería LIBSVM para el entrenamiento del modelo. Como en un principio, estos valores no se conocen es necesario definir los posibles intervalos de (C, γ) en el grid space. Entonces, todos los posibles grid points de (C, γ) fueron probados a fin de encontrar los primeros mejores valores $(bestc, bestg)$ a partir de los cuales los modelos entrenados predicen con la mayor exactitud datos de validación desconocidos (es decir, datos no utilizados durante el entrenamiento del modelo), es decir la mayor exactitud en la validación cruzada (bestcv). Como resultado, para el modelo de diagnóstico, se encontraron como mejores valores: $(C = 4, \gamma = 2)$, con lo cuales el modelo obtuvó una exactitud de 99.8753%. Asimismo, para el modelo de predicción los mejores valores fueron: $(C = 2, \gamma = 8)$, con lo cuales el modelo obtuvo una exactitud de 97.9814%.

4.4 Construcción de los modelos finales: Entrenamiento, validación y test.

La cuarta etapa consistió en la construcción de los modelos finales utilizando la configuración seleccionada en las etapas anteriores. El primer modelo destinado al diagnóstico de sujetos como sC o sAD fue entrenado con las 1265 instancias y 27 variables predictoras del grupo $sCsAD_{train}$ y testado con las 1145 instancias y 27 variables del grupo $sCsAD_{test}$. Como resultado en el test, el modelo obtuvo una matriz de confusión conformada por:

1. Verdaderos positivos (TP)=553, es decir, 553 instancias originalmente clasificadas como sC fueron clasificadas correctamente como sC;
2. Verdaderos negativos (TN)=589, es decir 589 instancias originalmente clasificadas como sAD fueron clasificadas correctamente como sAD;
3. Falsos positivos (FP)=2; es decir 2 instancia diagnosticada como sAD fueron incorrectamente clasificadas como sC; y
4. Falsos negativos (FN)=1, es decir es decir 1 instancia diagnosticadas como sC fue incorrectamente clasificadas como sAD.

Por otro lado, el modelo de predicción fue entrenado con las 894 instancias con 27 variables predictoras del grupo $sMCI_{train}$ y testado con las 814 instancias del grupo $sMCI_{test}$, obteniéndose durante el test una matriz de confusión con las siguientes características:
1. Verdaderos positivos (TP)=166, es decir, 166 instancias originalmente clasificadas como sMCIc fueron clasificadas correctamente como sMCIc;
2. Verdaderos negativos (TN)=593, es decir 593 instancias originalmente clasificadas como sMCIc fueron clasificadas correctamente como sMCIc;
3. Falsos positivos (FP)=40; es decir 40 instancias diagnosticadas como sMCIc fueron incorrectamente clasificadas como sMCIc; y
4. Falsos negativos (FN)=15, es decir es decir 15 instancias diagnosticadas como sMCIc fue incorrectamente clasificadas como sMCIc.

En la figura 4 se muestra gráficamente utilizando la librería svm-toy de LIBSVM, cómo el modelo de diagnóstico basado en SVM realizó la clasificación de los datos durante el entrenamiento y el test, separando las clases positivas (sAD) de las negativas (sC) en el hiperplano. En la figura se observa que a pesar de haber configurado el modelo con el kernel RBF y los mejores parámetros (C, γ), la separación de las clases en el hiperplano no ha sido cien por ciento correcta, lo cual se debe a que en ningún caso se podrá clasificar las instancias correctamente debido a que nuestro problema no es totalmente en ningún espacio dentrada. Con respecto al modelo de predicción, la separación de las clases positivas (sMCIc) de las clases negativas (sMCIc) en el hiperplano fue aún más complicado debido a que tienen un comportamiento no-lineal mayor por lo que el error en la clasificación es más alto. En la sección 4.2 se describieron las características no lineales de ambos problemas de clasificación y se presentó gráficamente la distribución de las clases para ambos problemas.

![Fig. 4. Separación de las clases realizada por el modelo de diagnóstico: (a) Clasificación de las instancias de entrenamiento con el grupo $sCsAD_{train}$. (b) Clasificación de las instancias de test con el grupo $sCsAD_{test}$. Gráficas generadas con la librería svm-toy de la herramienta LIBSVM](image-url)

5 Results

5.1 Indicadores estadísticos obtenidos por los modelos durante la etapa de test

Con la finalidad de conocer el desempeño de los modelos construidos con las 27 variables predictoras durante la etapa de test, los cinco indicadores estadísticos (utilizados a lo largo de este trabajo) fueron calculados sobre las respectivas matrices de confusión.

En la tabla 5 son presentados estos resultados. A partir de la cual se observa:

1. El modelo de diagnóstico construido a partir de estas variables obtuvo durante el test, valores más altos en los cinco indicadores estadísticos, en comparación con los resultados previos obtenidos por los seis modelos auxiliares, ver tabla 3. Esto se debe a que la matriz de confusión obtenida en este caso fue la mejor, obteniendo sólo dos errores en la clasificación con FP=2.
2. El valor AUC para el rea bajo la curva ROC obtenida por ambos modelos fueron muy aceptables. Por ejemplo, el AUC de la curva del modelo de diagnóstico fue de 0.9974, valor muy cercano a AUC= 1 de una curva ideal. Diversos investigadores consideran que el área bajo el receptor de funcionamiento característico (ROC) curvas, conocido como AUC debería ser el criterio principal para evaluar la efectividad de los biomarcadores de diagnóstico, es así, que la efectividad de uso de esta medición estadística ha sido demostrada en diversas publicaciones, varias de ellas enfocados en cardiología y neurología [48],[49], [50],[51],[4]. En nuestro caso, la curva ROC obtenida se interpreta como que un individuo seleccionado al azar entre el grupo sAD tiene un valor de prueba mayor que para un individuo elegido al azar entre el grupo sC en 99.74% de las veces (Zweig y Campbell, 1993). Si las 27 variables seleccionadas no pudiesen distinguir entre los dos grupos, es decir, cuando no hay diferencia entre las dos distribuciones, el rea hubiese sido igual a 0,5 (la curva ROC coincidir con la línea diagonal). En el caso que exista una separación perfecta de los valores de los dos grupos (sin solapamiento de las distribuciones), el rea bajo la curva ROC hubiese sido igual a 1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Inputs</th>
<th>Exactitud</th>
<th>Precisión</th>
<th>Sensitiv.</th>
<th>Especific.</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 1: Diagnóstico</td>
<td>27</td>
<td>99.74</td>
<td>99.64</td>
<td>99.82</td>
<td>99.66</td>
<td>0.9974</td>
</tr>
<tr>
<td>Modelo 2: Predicción</td>
<td>27</td>
<td>93.24</td>
<td>80.58</td>
<td>91.71</td>
<td>93.68</td>
<td>0.9270</td>
</tr>
</tbody>
</table>

5.2 Discriminating MRI, CSF and NM features

5.3 Classification performance combining both modalities of features

6 Discussion

6.1 Single mode predictors

6.2 Combined predictors

6.3 Limitations

Limitación 1.

Acknowledgments. Agradecimientos para CIMNE y biomedicina

References

45. Chih-Wei, H., Chih-Chung, C., Chih-Jen, L.: A Practical Guide to Support Vector Classification. Department of Computer Science National Taiwan University,

Appendix: Tables

Neocortical measurements
Table 6. Variables morfológicas de la región cortical consideradas en este estudio

<table>
<thead>
<tr>
<th>Cortical features (n = 279)</th>
<th>Bilateral</th>
<th>Hemispheres</th>
<th>CV</th>
<th>SA</th>
<th>TA</th>
<th>TS</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks Superior Temporal Sulcus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Caudal Anterior Cingulate Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Caudal Middle Frontal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Cuneus Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Entorhinal Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Frontal Pole</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Fusiform Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Inferior Parietal Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Inferior Temporal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Insula</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Retrosplenial Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Lateral Occipital Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Lateral Orbital Frontal Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Lingual Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Medial Orbital Frontal Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Middle Temporal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Postcentral Lobule</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Parahippocampal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Pars Opercularis</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Pars Orbitalis</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Pars Triangularis</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Pericalcarine Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Postcentral Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Posterior Cingulate Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Precuneus Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Retrosplenial Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Rostral Anterior Cingulate Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Rostral Middle Frontal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Superior Frontal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Superior Parietal Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Superior Temporal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Supramarginal Gyrus</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Temporal Pole</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Transverse Temporal Cortex</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Hemisphere</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Total Intracranial Volume</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>

No-neocortical measurements
Table 7. Variables morfológicas de la región no-cortical consideradas en este estudio

<table>
<thead>
<tr>
<th>ROI (variable)</th>
<th>Lateralidad</th>
<th>Tipos de mediciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bilat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV</td>
</tr>
<tr>
<td>Subcortical features (n = 44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumbens Area</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amygdala</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Caudate</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cerebellum Cortex</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cerebellum White Matter</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cerebral Cortex</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cerebral White Matter</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Choroid Plexus</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inferior Lateral Ventricle</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lateral Ventricle</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pallidum</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Putamen</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thalamus</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ventricle Diencephalon</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vessel</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Brain Stem</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Corpus Callosum Anterior</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Corpus Callosum Central</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Corpus Callosum Middle Anterior</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Corpus Callosum Middle Posterior</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Corpus Callosum Posterior</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cerebrospinal Fluid</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fourth Ventricle</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Non White Matter Hypointensities</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Optic Chiasm</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Third Ventricle</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>White Matter Hypointensities</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Ranking of morphological features using Minimum Redundancy and Maximum Relevance (mRMR) method

Table 8: Ranking of morphological features using mRMR method

<table>
<thead>
<tr>
<th>Ranking mRMR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ST24TA</td>
<td>Cortical Thickness Average of Left Entorhinal</td>
<td>0.8704</td>
</tr>
<tr>
<td>2</td>
<td>ST90TA</td>
<td>Cortical Thickness Average of Right Inferior Parietal</td>
<td>0.7977</td>
</tr>
<tr>
<td>3</td>
<td>ST88SV</td>
<td>Volume (WM Parcellation) of Right Hippocampus</td>
<td>0.8641</td>
</tr>
<tr>
<td>4</td>
<td>ST32TA</td>
<td>Cortical Thickness Average of Left Inferior Temporal</td>
<td>0.8328</td>
</tr>
<tr>
<td>5</td>
<td>ST83TA</td>
<td>Cortical Thickness Average of Right Entorhinal</td>
<td>0.8671</td>
</tr>
<tr>
<td>6</td>
<td>ST83CV</td>
<td>Volume (Cortical Parcellation) of Right Entorhinal</td>
<td>0.8252</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Ranking</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ST13TA</td>
<td>Cortical Thickness Average of Left Bankssts</td>
<td>0.7916</td>
</tr>
<tr>
<td>8</td>
<td>ST29SV</td>
<td>Volume (WM Parcellation) of Left Hippocampus</td>
<td>0.8860</td>
</tr>
<tr>
<td>9</td>
<td>ST99TA</td>
<td>Cortical Thickness Average of Right Middle Temporal</td>
<td>0.8550</td>
</tr>
<tr>
<td>10</td>
<td>ST71SV</td>
<td>Volume (WM Parcellation) of Right Amygdala</td>
<td>0.7978</td>
</tr>
<tr>
<td>11</td>
<td>ST85TA</td>
<td>Cortical Thickness Average of Right Fusiform</td>
<td>0.7998</td>
</tr>
<tr>
<td>12</td>
<td>ST103TA</td>
<td>Cortical Thickness Average of Right Parahippocampal</td>
<td>0.7633</td>
</tr>
<tr>
<td>13</td>
<td>ST40TA</td>
<td>Cortical Thickness Average of Left Middle Temporal</td>
<td>0.8682</td>
</tr>
<tr>
<td>14</td>
<td>ST12SV</td>
<td>Volume (WM Parcellation) of Left Amygdala</td>
<td>0.8056</td>
</tr>
<tr>
<td>15</td>
<td>ST26TA</td>
<td>Cortical Thickness Average of Left Fusiform</td>
<td>0.7986</td>
</tr>
<tr>
<td>16</td>
<td>ST44TA</td>
<td>Cortical Thickness Average of Left Parahippocampal</td>
<td>0.7716</td>
</tr>
<tr>
<td>17</td>
<td>ST91TA</td>
<td>Cortical Thickness Average of Right Inferior Temporal</td>
<td>0.8215</td>
</tr>
<tr>
<td>18</td>
<td>ST40CV</td>
<td>Volume (Cortical Parcellation) of Left Middle Temporal</td>
<td>0.7897</td>
</tr>
<tr>
<td>19</td>
<td>ST93TA</td>
<td>Cortical Thickness Average of Right Isthmus Cingulate</td>
<td>0.7385</td>
</tr>
<tr>
<td>20</td>
<td>ST72TA</td>
<td>Cortical Thickness Average of Right Bankssts</td>
<td>0.7781</td>
</tr>
<tr>
<td>21</td>
<td>ST44CV</td>
<td>Volume (Cortical Parcellation) of Left Parahippocampal</td>
<td>0.7574</td>
</tr>
<tr>
<td>22</td>
<td>ST117TA</td>
<td>Cortical Thickness Average of Right Superior Temporal</td>
<td>0.7934</td>
</tr>
<tr>
<td>23</td>
<td>ST114TA</td>
<td>Cortical Thickness Average of Right Rostral Middle Frontal</td>
<td>0.7510</td>
</tr>
<tr>
<td>24</td>
<td>ST31CV</td>
<td>Volume (Cortical Parcellation) of Left Inferior Parietal</td>
<td>0.7444</td>
</tr>
<tr>
<td>25</td>
<td>ST58TA</td>
<td>Cortical Thickness Average of Left Superior Temporal</td>
<td>0.8040</td>
</tr>
<tr>
<td>26</td>
<td>ST32CV</td>
<td>Volume (Cortical Parcellation) of Left Inferior Parietal</td>
<td>0.7537</td>
</tr>
<tr>
<td>27</td>
<td>ST111TA</td>
<td>Cortical Thickness Average of Right Precuneus</td>
<td>0.7689</td>
</tr>
<tr>
<td>28</td>
<td>ST83TS</td>
<td>Cortical Thickness Standard Deviation of Right Entorhinal</td>
<td>0.6407</td>
</tr>
<tr>
<td>29</td>
<td>ST60TA</td>
<td>Cortical Thickness Average of Left Temporal Pole</td>
<td>0.7767</td>
</tr>
<tr>
<td>30</td>
<td>ST31TA</td>
<td>Cortical Thickness Average of Left Inferior Parietal</td>
<td>0.7984</td>
</tr>
<tr>
<td>31</td>
<td>ST103CV</td>
<td>Volume (Cortical Parcellation) of Right Parahippocampal</td>
<td>0.7515</td>
</tr>
<tr>
<td>32</td>
<td>ST90CV</td>
<td>Volume (Cortical Parcellation) of Right Inferior Parietal</td>
<td>0.7477</td>
</tr>
<tr>
<td>33</td>
<td>ST99CV</td>
<td>Volume (Cortical Parcellation) of Right Middle Temporal</td>
<td>0.7616</td>
</tr>
<tr>
<td>34</td>
<td>ST24CV</td>
<td>Volume (Cortical Parcellation) of Left Entorhinal</td>
<td>0.8303</td>
</tr>
<tr>
<td>35</td>
<td>ST25TA</td>
<td>Cortical Thickness Average of Left Frontal Pole</td>
<td>0.6576</td>
</tr>
<tr>
<td>36</td>
<td>ST34TA</td>
<td>Cortical Thickness Average of Left Isthmus Cingulate</td>
<td>0.7471</td>
</tr>
<tr>
<td>37</td>
<td>ST85CV</td>
<td>Volume (Cortical Parcellation) of Right Fusiform</td>
<td>0.7465</td>
</tr>
<tr>
<td>38</td>
<td>ST38V</td>
<td>Volume (WM Parcellation) of Corpus Callosum Central</td>
<td>0.6493</td>
</tr>
<tr>
<td>39</td>
<td>ST59TA</td>
<td>Cortical Thickness Average of Left Supramarginal</td>
<td>0.7884</td>
</tr>
<tr>
<td>40</td>
<td>ST119TA</td>
<td>Cortical Thickness Average of Right Temporal Pole</td>
<td>0.7622</td>
</tr>
<tr>
<td>41</td>
<td>ST109TA</td>
<td>Cortical Thickness Average of Right Posterior Cingulate</td>
<td>0.6973</td>
</tr>
<tr>
<td>42</td>
<td>ST91CV</td>
<td>Volume (Cortical Parcellation) of Right Inferior Parietal</td>
<td>0.7585</td>
</tr>
<tr>
<td>43</td>
<td>ST39TA</td>
<td>Cortical Thickness Average of Left Medial Orbitofrontal</td>
<td>0.7104</td>
</tr>
<tr>
<td>44</td>
<td>ST55TA</td>
<td>Cortical Thickness Average of Left Rostral Middle Frontal</td>
<td>0.7586</td>
</tr>
<tr>
<td>45</td>
<td>ST34TS</td>
<td>Cortical Thickness Standard Deviation of Left Isthmus Cingulate</td>
<td>0.6510</td>
</tr>
<tr>
<td>46</td>
<td>ST129TA</td>
<td>Cortical Thickness Average of Left Insula</td>
<td>0.7125</td>
</tr>
<tr>
<td>47</td>
<td>ST57TA</td>
<td>Cortical Thickness Average of Left Superior Parietal</td>
<td>0.7040</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>ST37SV</td>
<td>Volume (WM Parcellation) of Left Lateral Ventricle</td>
<td>0.7068</td>
</tr>
<tr>
<td>49</td>
<td>ST111TS</td>
<td>Cortical Thickness Standard Deviation of Right Pre- cuneus</td>
<td>0.6909</td>
</tr>
<tr>
<td>50</td>
<td>ST59CV</td>
<td>Volume (Cortical Parcellation) of Left Supramarginal</td>
<td>0.7211</td>
</tr>
<tr>
<td>51</td>
<td>ST130TA</td>
<td>Cortical Thickness Average of Right Insula</td>
<td>0.7263</td>
</tr>
<tr>
<td>52</td>
<td>ST26CV</td>
<td>Volume (Cortical Parcellation) of Left Fusiform</td>
<td>0.7082</td>
</tr>
<tr>
<td>53</td>
<td>ST128SV</td>
<td>Volume (WM Parcellation) of WM Hypointensities</td>
<td>0.6464</td>
</tr>
<tr>
<td>54</td>
<td>ST89SV</td>
<td>Volume (WM Parcellation) of Right Inferior Lateral Ventricle</td>
<td>0.8167</td>
</tr>
<tr>
<td>55</td>
<td>ST111TA</td>
<td>Cortical Thickness Average of Right Supramarginal</td>
<td>0.7551</td>
</tr>
<tr>
<td>56</td>
<td>ST60CV</td>
<td>Volume (Cortical Parcellation) of Left Temporal Pole</td>
<td>0.6599</td>
</tr>
<tr>
<td>57</td>
<td>ST60TS</td>
<td>Cortical Thickness Standard Deviation of Left Temporal Pole</td>
<td>0.6363</td>
</tr>
<tr>
<td>58</td>
<td>ST55SV</td>
<td>Volume (WM Parcellation) of Corpus Callosum Mid Poster</td>
<td>0.6527</td>
</tr>
<tr>
<td>59</td>
<td>ST198TA</td>
<td>Cortical Thickness Average of Right Medial Orbitofrontal</td>
<td>0.7141</td>
</tr>
<tr>
<td>60</td>
<td>ST34CV</td>
<td>Volume (Cortical Parcellation) of Left Isthmus Cingulate</td>
<td>0.6665</td>
</tr>
<tr>
<td>61</td>
<td>ST84TA</td>
<td>Cortical Thickness Average of Right Frontal Pole</td>
<td>0.6644</td>
</tr>
<tr>
<td>62</td>
<td>ST110TS</td>
<td>Cortical Thickness Standard Deviation of Right Temporal Pole</td>
<td>0.6075</td>
</tr>
<tr>
<td>63</td>
<td>ST52TA</td>
<td>Cortical Thickness Average of Left Precentral</td>
<td>0.7506</td>
</tr>
<tr>
<td>64</td>
<td>ST96SV</td>
<td>Volume (WM Parcellation) of Right Lateral Ventricle</td>
<td>0.7053</td>
</tr>
<tr>
<td>65</td>
<td>ST68SV</td>
<td>Volume (WM Parcellation) of Non WM Hypointensities</td>
<td>0.6108</td>
</tr>
<tr>
<td>66</td>
<td>ST97TA</td>
<td>Cortical Thickness Average of Right Lingual</td>
<td>0.6374</td>
</tr>
<tr>
<td>67</td>
<td>ST24TS</td>
<td>Cortical Thickness Standard Deviation of Left Entorhinal</td>
<td>0.5886</td>
</tr>
<tr>
<td>68</td>
<td>ST94TA</td>
<td>Cortical Thickness Average of Right Lateral Occipital</td>
<td>0.7031</td>
</tr>
<tr>
<td>69</td>
<td>ST93CV</td>
<td>Volume (Cortical Parcellation) of Right Isthmus Cingulate</td>
<td>0.6756</td>
</tr>
<tr>
<td>70</td>
<td>ST106TA</td>
<td>Cortical Thickness Average of Right Pars Orbitalis</td>
<td>0.6849</td>
</tr>
<tr>
<td>71</td>
<td>ST129TS</td>
<td>Cortical Thickness Standard Deviation of Left Insula</td>
<td>0.5875</td>
</tr>
<tr>
<td>72</td>
<td>ST51SA</td>
<td>Surface Area of Left Precentral</td>
<td>0.5270</td>
</tr>
<tr>
<td>73</td>
<td>ST58CV</td>
<td>Volume (Cortical Parcellation) of Left Superior Temporal</td>
<td>0.7100</td>
</tr>
<tr>
<td>74</td>
<td>ST15TA</td>
<td>Cortical Thickness Average of Left Caudal Middle Frontal</td>
<td>0.7472</td>
</tr>
<tr>
<td>75</td>
<td>ST41TA</td>
<td>Cortical Thickness Standard Deviation of Left Caudal Anterior Cingulate</td>
<td>0.5756</td>
</tr>
<tr>
<td>76</td>
<td>ST116TA</td>
<td>Cortical Thickness Average of Right Superior Parietal</td>
<td>0.7017</td>
</tr>
<tr>
<td>77</td>
<td>ST75SV</td>
<td>Volume (WM Parcellation) of Right Caudate</td>
<td>0.5028</td>
</tr>
<tr>
<td>78</td>
<td>ST117CV</td>
<td>Volume (Cortical Parcellation) of Right Superior Temporal</td>
<td>0.6924</td>
</tr>
<tr>
<td>79</td>
<td>ST38TA</td>
<td>Cortical Thickness Average of Left Lingual</td>
<td>0.6721</td>
</tr>
<tr>
<td>80</td>
<td>ST50TA</td>
<td>Cortical Thickness Average of Left Posterior Cingulate</td>
<td>0.6962</td>
</tr>
<tr>
<td>81</td>
<td>ST72CV</td>
<td>Volume (Cortical Parcellation) of Right Bankssts</td>
<td>0.6998</td>
</tr>
<tr>
<td>82</td>
<td>ST95TA</td>
<td>Cortical Thickness Average of Right Lateral Orbitofrontal</td>
<td>0.6941</td>
</tr>
<tr>
<td>83</td>
<td>ST73TS</td>
<td>Cortical Thickness Standard Deviation of Right Caudal Anterior Cingulate</td>
<td>0.5534</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>ST74TA</td>
<td>Cortical Thickness Average of RightCaudalMiddle-Frontal</td>
<td>0.7437</td>
</tr>
<tr>
<td>85</td>
<td>ST4SV</td>
<td>Volume (WM Parcellation) of CorpusCallosumMidAnterior</td>
<td>0.6536</td>
</tr>
<tr>
<td>86</td>
<td>ST52CV</td>
<td>Volume (Cortical Parcellation) of LeftPrecuneus</td>
<td>0.7088</td>
</tr>
<tr>
<td>87</td>
<td>ST30SV</td>
<td>Volume (WM Parcellation) of LeftInferiorLateralVentricle</td>
<td>0.8267</td>
</tr>
<tr>
<td>88</td>
<td>ST104TS</td>
<td>Cortical Thickness Standard Deviation of RightParsOpercularis</td>
<td>0.5585</td>
</tr>
<tr>
<td>89</td>
<td>ST115TA</td>
<td>Cortical Thickness Average of RightSuperiorFrontal</td>
<td>0.7536</td>
</tr>
<tr>
<td>90</td>
<td>ST7SV</td>
<td>Volume (WM Parcellation) of Csf</td>
<td>0.6975</td>
</tr>
<tr>
<td>91</td>
<td>ST119CV</td>
<td>Volume (Cortical Parcellation) of RightTemporalPole</td>
<td>0.6494</td>
</tr>
<tr>
<td>92</td>
<td>ST84CV</td>
<td>Volume (Cortical Parcellation) of RightFrontalPole</td>
<td>0.5927</td>
</tr>
<tr>
<td>93</td>
<td>ST113TS</td>
<td>Cortical Thickness Standard Deviation of RightRostralAnteriorCingulate</td>
<td>0.5623</td>
</tr>
<tr>
<td>94</td>
<td>ST16SV</td>
<td>Volume (WM Parcellation) of LeftCaudate</td>
<td>0.5024</td>
</tr>
<tr>
<td>95</td>
<td>ST101SV</td>
<td>Volume (WM Parcellation) of RightPallidum</td>
<td>0.5700</td>
</tr>
<tr>
<td>96</td>
<td>ST121TS</td>
<td>Cortical Thickness Standard Deviation of RightTransverseTemporal</td>
<td>0.5588</td>
</tr>
<tr>
<td>97</td>
<td>ST44TS</td>
<td>Cortical Thickness Standard Deviation of LeftParahippocampal</td>
<td>0.5677</td>
</tr>
<tr>
<td>98</td>
<td>ST115CV</td>
<td>Volume (Cortical Parcellation) of RightSuperiorFrontal</td>
<td>0.6452</td>
</tr>
<tr>
<td>99</td>
<td>ST52TS</td>
<td>Cortical Thickness Standard Deviation of LeftPrecuneus</td>
<td>0.6598</td>
</tr>
<tr>
<td>100</td>
<td>ST111CV</td>
<td>Volume (Cortical Parcellation) of RightPrecuneus</td>
<td>0.7032</td>
</tr>
<tr>
<td>101</td>
<td>ST80SV</td>
<td>Volume (WM Parcellation) of RightChoroidPlexus</td>
<td>0.6430</td>
</tr>
<tr>
<td>102</td>
<td>ST56TA</td>
<td>Cortical Thickness Average of LeftSuperiorFrontal</td>
<td>0.7369</td>
</tr>
<tr>
<td>103</td>
<td>ST45TS</td>
<td>Cortical Thickness Standard Deviation of LeftParsOpercularis</td>
<td>0.5857</td>
</tr>
<tr>
<td>104</td>
<td>ST36TA</td>
<td>Cortical Thickness Average of LeftLateralOrbitofrontal</td>
<td>0.6896</td>
</tr>
<tr>
<td>105</td>
<td>ST69SV</td>
<td>Volume (WM Parcellation) of OpticChiasm</td>
<td>0.5767</td>
</tr>
<tr>
<td>106</td>
<td>ST19SV</td>
<td>Volume (WM Parcellation) of LeftCerebralCortex</td>
<td>0.6870</td>
</tr>
<tr>
<td>107</td>
<td>ST54TS</td>
<td>Cortical Thickness Standard Deviation of LeftRostralAnteriorCingulate</td>
<td>0.5745</td>
</tr>
<tr>
<td>108</td>
<td>ST60SA</td>
<td>Surface Area of LeftTemporalPole</td>
<td>0.5108</td>
</tr>
<tr>
<td>109</td>
<td>ST84SA</td>
<td>Surface Area of RightFrontalPole</td>
<td>0.5033</td>
</tr>
<tr>
<td>110</td>
<td>ST11SV</td>
<td>Volume (WM Parcellation) of LeftAccumbensArea</td>
<td>0.6312</td>
</tr>
<tr>
<td>111</td>
<td>ST35TA</td>
<td>Cortical Thickness Average of LeftLateralOccipital</td>
<td>0.6843</td>
</tr>
<tr>
<td>112</td>
<td>ST72TS</td>
<td>Cortical Thickness Standard Deviation of RightBankssts</td>
<td>0.5421</td>
</tr>
<tr>
<td>113</td>
<td>ST46TA</td>
<td>Cortical Thickness Average of LeftParsOrbitalis</td>
<td>0.6685</td>
</tr>
<tr>
<td>114</td>
<td>ST42SV</td>
<td>Volume (WM Parcellation) of LeftPallidum</td>
<td>0.5853</td>
</tr>
<tr>
<td>115</td>
<td>ST106CV</td>
<td>Volume (Cortical Parcellation) of RightParsTriangularis</td>
<td>0.6020</td>
</tr>
<tr>
<td>116</td>
<td>ST123TS</td>
<td>Cortical Thickness Standard Deviation of LeftCuneus</td>
<td>0.5292</td>
</tr>
<tr>
<td>117</td>
<td>ST124SV</td>
<td>Volume (WM Parcellation) of RightVentralDC</td>
<td>0.6227</td>
</tr>
<tr>
<td>118</td>
<td>ST127SV</td>
<td>Volume (WM Parcellation) of ThirdVentricle</td>
<td>0.6421</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Ranking</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>ST90TS</td>
<td>Cortical Thickness Standard Deviation of Right Inferior-Parietal</td>
<td>0.6574</td>
</tr>
<tr>
<td>120</td>
<td>ST103SA</td>
<td>Surface Area of Right Parahippocampal</td>
<td>0.5611</td>
</tr>
<tr>
<td>121</td>
<td>ST91SA</td>
<td>Surface Area of Right Inferior Temporal</td>
<td>0.6229</td>
</tr>
<tr>
<td>122</td>
<td>ST49TA</td>
<td>Cortical Thickness Average of Left Postcentral</td>
<td>0.6660</td>
</tr>
<tr>
<td>123</td>
<td>ST82TS</td>
<td>Cortical Thickness Standard Deviation of Right Cuneus</td>
<td>0.5199</td>
</tr>
<tr>
<td>124</td>
<td>ST109CV</td>
<td>Volume (Cortical Parcellation) of Right Posterior Cingulate</td>
<td>0.6395</td>
</tr>
<tr>
<td>125</td>
<td>ST106TA</td>
<td>Cortical Thickness Average of Right Pars Opercularis</td>
<td>0.6937</td>
</tr>
<tr>
<td>126</td>
<td>ST23TA</td>
<td>Cortical Thickness Average of Left Cuneus</td>
<td>0.5954</td>
</tr>
<tr>
<td>127</td>
<td>ST48TA</td>
<td>Cortical Thickness Average of Left Pericalcarine</td>
<td>0.6193</td>
</tr>
<tr>
<td>128</td>
<td>ST70SV</td>
<td>Volume (WM Parcellation) of Right Accumbens Area</td>
<td>0.6420</td>
</tr>
<tr>
<td>129</td>
<td>ST91TS</td>
<td>Cortical Thickness Standard Deviation of Right Inferior-Parietal</td>
<td>0.5573</td>
</tr>
<tr>
<td>130</td>
<td>ST103TS</td>
<td>Cortical Thickness Standard Deviation of Right Parahippocampal</td>
<td>0.5589</td>
</tr>
<tr>
<td>131</td>
<td>ST48TS</td>
<td>Cortical Thickness Standard Deviation of Left Pericalcarine</td>
<td>0.5749</td>
</tr>
<tr>
<td>132</td>
<td>ST39TS</td>
<td>Cortical Thickness Standard Deviation of Left Medial Orbitofrontal</td>
<td>0.5611</td>
</tr>
<tr>
<td>133</td>
<td>ST97TS</td>
<td>Cortical Thickness Standard Deviation of Right Lingual</td>
<td>0.5769</td>
</tr>
<tr>
<td>134</td>
<td>ST45TA</td>
<td>Cortical Thickness Average of Left Pars Opercularis</td>
<td>0.6841</td>
</tr>
<tr>
<td>135</td>
<td>ST40SA</td>
<td>Surface Area of Left Middle Temporal</td>
<td>0.6055</td>
</tr>
<tr>
<td>136</td>
<td>ST13SA</td>
<td>Surface Area of Left Banksts</td>
<td>0.5742</td>
</tr>
<tr>
<td>137</td>
<td>ST31TS</td>
<td>Cortical Thickness Standard Deviation of Left Inferior-Parietal</td>
<td>0.6614</td>
</tr>
<tr>
<td>138</td>
<td>ST108SA</td>
<td>Surface Area of Right Postcentral</td>
<td>0.5197</td>
</tr>
<tr>
<td>139</td>
<td>ST106TA</td>
<td>Cortical Thickness Average of Right Pars Triangularis</td>
<td>0.6836</td>
</tr>
<tr>
<td>140</td>
<td>ST98CV</td>
<td>Volume (Cortical Parcellation) of Right Medial Orbitofrontal</td>
<td>0.6365</td>
</tr>
<tr>
<td>141</td>
<td>ST108TA</td>
<td>Cortical Thickness Average of Right Postcentral</td>
<td>0.6550</td>
</tr>
<tr>
<td>142</td>
<td>ST50CV</td>
<td>Volume (Cortical Parcellation) of Left Posterior Cingulate</td>
<td>0.6607</td>
</tr>
<tr>
<td>143</td>
<td>ST21SV</td>
<td>Volume (WM Parcellation) of Left Choroid Plexus</td>
<td>0.6319</td>
</tr>
<tr>
<td>144</td>
<td>ST130TS</td>
<td>Cortical Thickness Standard Deviation of Right Insula</td>
<td>0.5788</td>
</tr>
<tr>
<td>145</td>
<td>ST113TA</td>
<td>Cortical Thickness Average of Right Rostral Anterior Cingulate</td>
<td>0.5986</td>
</tr>
<tr>
<td>146</td>
<td>ST25CV</td>
<td>Volume (Cortical Parcellation) of Left Frontal Pole</td>
<td>0.5791</td>
</tr>
<tr>
<td>147</td>
<td>ST130CV</td>
<td>Volume (Cortical Parcellation) of Right Insula</td>
<td>0.6478</td>
</tr>
<tr>
<td>148</td>
<td>ST102SA</td>
<td>Surface Area of Right Paracentral</td>
<td>0.5491</td>
</tr>
<tr>
<td>149</td>
<td>ST104CV</td>
<td>Volume (Cortical Parcellation) of Right Pars Opercularis</td>
<td>0.5870</td>
</tr>
<tr>
<td>150</td>
<td>ST47TA</td>
<td>Cortical Thickness Average of Left Pars Triangularis</td>
<td>0.6650</td>
</tr>
<tr>
<td>151</td>
<td>ST108CV</td>
<td>Volume (Cortical Parcellation) of Right Postcentral</td>
<td>0.5823</td>
</tr>
<tr>
<td>152</td>
<td>ST15CV</td>
<td>Volume (Cortical Parcellation) of Left Caudal Middle Frontal</td>
<td>0.6559</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td>ST113SA</td>
<td>Surface Area of Right Rostral Anterior Cingulate</td>
<td>0.5510</td>
</tr>
<tr>
<td>154</td>
<td>ST110TA</td>
<td>Cortical Thickness Average of Right Precentral</td>
<td>0.6700</td>
</tr>
<tr>
<td>155</td>
<td>ST118CV</td>
<td>Volume (Cortical Parcellation) of Right Supramarginal</td>
<td>0.6689</td>
</tr>
<tr>
<td>156</td>
<td>ST83SA</td>
<td>Surface Area of Right Entorhinal</td>
<td>0.5859</td>
</tr>
<tr>
<td>157</td>
<td>ST45CV</td>
<td>Volume (Cortical Parcellation) of Left Pars Opercularis</td>
<td>0.5674</td>
</tr>
<tr>
<td>158</td>
<td>ST107TS</td>
<td>Cortical Thickness Standard Deviation of Right Pericalcarine</td>
<td>0.5377</td>
</tr>
<tr>
<td>159</td>
<td>ST25TS</td>
<td>Cortical Thickness Standard Deviation of Left FrONTAL Pole</td>
<td>0.5164</td>
</tr>
<tr>
<td>160</td>
<td>ST106CV</td>
<td>Volume (Cortical Parcellation) of Right Pars Orbitalis</td>
<td>0.6218</td>
</tr>
<tr>
<td>161</td>
<td>ST14TA</td>
<td>Cortical Thickness Average of Left Caudal Anterior Cingulate</td>
<td>0.5540</td>
</tr>
<tr>
<td>162</td>
<td>ST97SA</td>
<td>Surface Area of Right Lingual</td>
<td>0.5216</td>
</tr>
<tr>
<td>163</td>
<td>ST115TS</td>
<td>Cortical Thickness Standard Deviation of Right Superior Frontal</td>
<td>0.5671</td>
</tr>
<tr>
<td>164</td>
<td>ST125SA</td>
<td>Surface Area of Left Frontal Pole</td>
<td>0.5188</td>
</tr>
<tr>
<td>165</td>
<td>ST43TS</td>
<td>Cortical Thickness Standard Deviation of Left Paracentral</td>
<td>0.5261</td>
</tr>
<tr>
<td>166</td>
<td>ST58TS</td>
<td>Cortical Thickness Standard Deviation of Left Superior Temporal</td>
<td>0.5629</td>
</tr>
<tr>
<td>167</td>
<td>ST32SA</td>
<td>Surface Area of Left Inferior Temporal</td>
<td>0.5969</td>
</tr>
<tr>
<td>168</td>
<td>ST94TS</td>
<td>Cortical Thickness Standard Deviation of Right Lateral Occipital</td>
<td>0.5668</td>
</tr>
<tr>
<td>169</td>
<td>ST9SV</td>
<td>Volume (WM Parcellation) of Fourth Ventricle</td>
<td>0.5344</td>
</tr>
<tr>
<td>170</td>
<td>ST56CV</td>
<td>Volume (Cortical Parcellation) of Left Superior Frontal</td>
<td>0.6476</td>
</tr>
<tr>
<td>171</td>
<td>ST13TS</td>
<td>Cortical Thickness Standard Deviation of Left Banksts</td>
<td>0.5047</td>
</tr>
<tr>
<td>172</td>
<td>ST100TS</td>
<td>Cortical Thickness Standard Deviation of Right Posterior Orinal Cingulate</td>
<td>0.5097</td>
</tr>
<tr>
<td>173</td>
<td>ST13CV</td>
<td>Volume (Cortical Parcellation) of Left Banksts</td>
<td>0.7055</td>
</tr>
<tr>
<td>174</td>
<td>ST46TS</td>
<td>Cortical Thickness Standard Deviation of Left Pars Orbitalis</td>
<td>0.5004</td>
</tr>
<tr>
<td>175</td>
<td>ST36CV</td>
<td>Volume (Cortical Parcellation) of Left Lateral Orbitofrontal</td>
<td>0.6139</td>
</tr>
<tr>
<td>176</td>
<td>ST184TS</td>
<td>Cortical Thickness Standard Deviation of Right Frontal Pole</td>
<td>0.5239</td>
</tr>
<tr>
<td>177</td>
<td>ST45SA</td>
<td>Surface Area of Left Pars Opercularis</td>
<td>0.5300</td>
</tr>
<tr>
<td>178</td>
<td>ST107TA</td>
<td>Cortical Thickness Average of Right Pericalcarine</td>
<td>0.5875</td>
</tr>
<tr>
<td>179</td>
<td>ST114TS</td>
<td>Cortical Thickness Standard Deviation of Right Rostral Middle Frontal</td>
<td>0.5847</td>
</tr>
<tr>
<td>180</td>
<td>ST55CV</td>
<td>Volume (Cortical Parcellation) of Left Rostral Middle Frontal</td>
<td>0.6404</td>
</tr>
<tr>
<td>181</td>
<td>ST68V</td>
<td>Volume (WM Parcellation) of Corpus Callosum Posterior</td>
<td>0.5976</td>
</tr>
<tr>
<td>182</td>
<td>ST15TS</td>
<td>Cortical Thickness Standard Deviation of Left Caudal Middle Frontal</td>
<td>0.5006</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Ranking</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>ST104SA</td>
<td>Surface Area of RightParsOpercularis</td>
<td>0.5039</td>
</tr>
<tr>
<td>184</td>
<td>ST26TS</td>
<td>Cortical Thickness Standard Deviation of LeftFusiform</td>
<td>0.5545</td>
</tr>
<tr>
<td>185</td>
<td>ST18S</td>
<td>Volume (WM Parcellation) of Brainstem</td>
<td>0.5560</td>
</tr>
<tr>
<td>186</td>
<td>ST110SA</td>
<td>Surface Area of RightTemporalPole</td>
<td>0.5121</td>
</tr>
<tr>
<td>187</td>
<td>ST105TS</td>
<td>Cortical Thickness Standard Deviation of RightParsOrbitalis</td>
<td>0.5126</td>
</tr>
<tr>
<td>188</td>
<td>ST93TS</td>
<td>Cortical Thickness Standard Deviation of RightIsthmus-Cingulate</td>
<td>0.6142</td>
</tr>
<tr>
<td>189</td>
<td>ST38CV</td>
<td>Volume (Cortical Parcellation) of LeftLingual</td>
<td>0.5764</td>
</tr>
<tr>
<td>190</td>
<td>ST106SA</td>
<td>Surface Area of RightParsTriangularis</td>
<td>0.5097</td>
</tr>
<tr>
<td>191</td>
<td>ST43SA</td>
<td>Surface Area of LeftParacentral</td>
<td>0.5453</td>
</tr>
<tr>
<td>192</td>
<td>ST62TA</td>
<td>Cortical Thickness Average of LeftTransverseTemporal</td>
<td>0.6197</td>
</tr>
<tr>
<td>193</td>
<td>ST129CV</td>
<td>Volume (Cortical Parcellation) of LeftInsula</td>
<td>0.6357</td>
</tr>
<tr>
<td>194</td>
<td>ST102TA</td>
<td>Cortical Thickness Average of RightParacentral</td>
<td>0.6248</td>
</tr>
<tr>
<td>195</td>
<td>ST38TS</td>
<td>Cortical Thickness Standard Deviation of LeftLingual</td>
<td>0.5567</td>
</tr>
<tr>
<td>196</td>
<td>ST54TA</td>
<td>Cortical Thickness Average of LeftRostralAnteriorCingulate</td>
<td>0.6085</td>
</tr>
<tr>
<td>197</td>
<td>ST73SA</td>
<td>Surface Area of RightCaudalAnteriorCingulate</td>
<td>0.5663</td>
</tr>
<tr>
<td>198</td>
<td>ST61SV</td>
<td>Volume (WM Parcellation) of LeftThalamus</td>
<td>0.5593</td>
</tr>
<tr>
<td>199</td>
<td>ST47CV</td>
<td>Volume (Cortical Parcellation) of LeftParsTriangularis</td>
<td>0.6336</td>
</tr>
<tr>
<td>200</td>
<td>ST24SA</td>
<td>Surface Area of LeftEntorhinal</td>
<td>0.6010</td>
</tr>
<tr>
<td>201</td>
<td>ST49SA</td>
<td>Surface Area of LeftPostcentral</td>
<td>0.5200</td>
</tr>
<tr>
<td>202</td>
<td>ST40TS</td>
<td>Cortical Thickness Standard Deviation of LeftMiddleTemporal</td>
<td>0.5550</td>
</tr>
<tr>
<td>203</td>
<td>ST72SA</td>
<td>Surface Area of RightBankssts</td>
<td>0.5851</td>
</tr>
<tr>
<td>204</td>
<td>ST46CV</td>
<td>Volume (Cortical Parcellation) of LeftParsOrbitalis</td>
<td>0.5964</td>
</tr>
<tr>
<td>205</td>
<td>ST56TS</td>
<td>Cortical Thickness Standard Deviation of LeftSuperiorFrontal</td>
<td>0.5556</td>
</tr>
<tr>
<td>206</td>
<td>ST65SV</td>
<td>Volume (WM Parcellation) of LeftVentralDC</td>
<td>0.6008</td>
</tr>
<tr>
<td>207</td>
<td>ST62SA</td>
<td>Surface Area of LeftTransverseTemporal</td>
<td>0.5391</td>
</tr>
<tr>
<td>208</td>
<td>ST49TS</td>
<td>Cortical Thickness Standard Deviation of LeftPostcentral</td>
<td>0.5751</td>
</tr>
<tr>
<td>209</td>
<td>ST53SV</td>
<td>Volume (WM Parcellation) of LeftPutamen</td>
<td>0.6173</td>
</tr>
<tr>
<td>210</td>
<td>ST15SA</td>
<td>Surface Area of LeftCaudalMiddleFrontal</td>
<td>0.5143</td>
</tr>
<tr>
<td>211</td>
<td>ST48CV</td>
<td>Volume (Cortical Parcellation) of LeftPericalcarine</td>
<td>0.5370</td>
</tr>
<tr>
<td>212</td>
<td>ST117TS</td>
<td>Cortical Thickness Standard Deviation of RightSuperiorTemporal</td>
<td>0.5224</td>
</tr>
<tr>
<td>213</td>
<td>ST50TS</td>
<td>Cortical Thickness Standard Deviation of LeftPosteriorCingulate</td>
<td>0.5184</td>
</tr>
<tr>
<td>214</td>
<td>ST14SA</td>
<td>Surface Area of LeftCaudalAnteriorCingulate</td>
<td>0.5283</td>
</tr>
<tr>
<td>215</td>
<td>ST62TS</td>
<td>Cortical Thickness Standard Deviation of LeftTransverseTemporal</td>
<td>0.5053</td>
</tr>
<tr>
<td>216</td>
<td>ST79SV</td>
<td>Volume (WM Parcellation) of RightCerebralWM</td>
<td>0.6244</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
<td>ST102TS</td>
<td>Cortical Thickness Standard Deviation of RightParacentral</td>
<td>0.5109</td>
</tr>
<tr>
<td>218</td>
<td>ST97CV</td>
<td>Volume (Cortical Parcellation) of RightLingual</td>
<td>0.5830</td>
</tr>
<tr>
<td>219</td>
<td>ST51TA</td>
<td>Cortical Thickness Average of LeftPrecentral</td>
<td>0.6605</td>
</tr>
<tr>
<td>220</td>
<td>ST95CV</td>
<td>Volume (Cortical Parcellation) of RightLateralOrbitofrontal</td>
<td>0.6136</td>
</tr>
<tr>
<td>221</td>
<td>ST85TS</td>
<td>Cortical Thickness Standard Deviation of RightFusiform</td>
<td>0.5267</td>
</tr>
<tr>
<td>222</td>
<td>ST57SA</td>
<td>Surface Area of LeftSuperiorParietal</td>
<td>0.5356</td>
</tr>
<tr>
<td>223</td>
<td>ST47TS</td>
<td>Cortical Thickness Standard Deviation of LeftParsTriangularis</td>
<td>0.5032</td>
</tr>
<tr>
<td>224</td>
<td>ST82TA</td>
<td>Cortical Thickness Average of RightCuneus</td>
<td>0.5912</td>
</tr>
<tr>
<td>225</td>
<td>ST39CV</td>
<td>Volume (Cortical Parcellation) of LeftMedialOrbitofrontal</td>
<td>0.6012</td>
</tr>
<tr>
<td>226</td>
<td>ST57TS</td>
<td>Cortical Thickness Standard Deviation of LeftSuperiorParietal</td>
<td>0.5791</td>
</tr>
<tr>
<td>227</td>
<td>ST95TS</td>
<td>Cortical Thickness Standard Deviation of RightLateralOrbitofrontal</td>
<td>0.5357</td>
</tr>
<tr>
<td>228</td>
<td>ST98TS</td>
<td>Cortical Thickness Standard Deviation of RightMedialOrbitofrontal</td>
<td>0.5493</td>
</tr>
<tr>
<td>229</td>
<td>ST18SV</td>
<td>Volume (WM Parcellation) of LeftCerebellumWM</td>
<td>0.5167</td>
</tr>
<tr>
<td>230</td>
<td>ST74CV</td>
<td>Volume (Cortical Parcellation) of RightCaudalMiddleFrontal</td>
<td>0.6088</td>
</tr>
<tr>
<td>231</td>
<td>ST26SA</td>
<td>Surface Area of LeftFusiform</td>
<td>0.5577</td>
</tr>
<tr>
<td>232</td>
<td>ST47SA</td>
<td>Surface Area of LeftParsTriangularis</td>
<td>0.5578</td>
</tr>
<tr>
<td>233</td>
<td>ST107CV</td>
<td>Volume (Cortical Parcellation) of RightPericalcarine</td>
<td>0.5502</td>
</tr>
<tr>
<td>234</td>
<td>ST46SA</td>
<td>Surface Area of LeftParsOrbitalis</td>
<td>0.5223</td>
</tr>
<tr>
<td>235</td>
<td>ST36TS</td>
<td>Cortical Thickness Standard Deviation of LeftLateralOrbitofrontal</td>
<td>0.5200</td>
</tr>
<tr>
<td>236</td>
<td>ST78SV</td>
<td>Volume (WM Parcellation) of RightCerebralCortex</td>
<td>0.6850</td>
</tr>
<tr>
<td>237</td>
<td>ST118TS</td>
<td>Cortical Thickness Standard Deviation of RightSupramarginal</td>
<td>0.5299</td>
</tr>
<tr>
<td>238</td>
<td>ST121CV</td>
<td>Volume (Cortical Parcellation) of RightTransverseTemporal</td>
<td>0.5670</td>
</tr>
<tr>
<td>239</td>
<td>ST112SV</td>
<td>Volume (WM Parcellation) of RightPutamen</td>
<td>0.6165</td>
</tr>
<tr>
<td>240</td>
<td>ST44SA</td>
<td>Surface Area of LeftParahippocampal</td>
<td>0.5171</td>
</tr>
<tr>
<td>241</td>
<td>ST28V</td>
<td>Volume (WM Parcellation) of CorpusCallosumAnterior</td>
<td>0.5733</td>
</tr>
<tr>
<td>242</td>
<td>ST111SA</td>
<td>Surface Area of RightPrecuneus</td>
<td>0.5299</td>
</tr>
<tr>
<td>243</td>
<td>ST74TS</td>
<td>Cortical Thickness Standard Deviation of RightCaudalMiddleFrontal</td>
<td>0.5063</td>
</tr>
<tr>
<td>244</td>
<td>ST35TS</td>
<td>Cortical Thickness Standard Deviation of LeftLateralOccipital</td>
<td>0.5549</td>
</tr>
<tr>
<td>245</td>
<td>ST74SA</td>
<td>Surface Area of RightCaudalMiddleFrontal</td>
<td>0.5285</td>
</tr>
<tr>
<td>246</td>
<td>ST199TS</td>
<td>Cortical Thickness Standard Deviation of RightMiddleTemporal</td>
<td>0.5071</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>ST94CV</td>
<td>Volume (Cortical Parcellation) of Right Lateral Occipital</td>
<td>0.5907</td>
</tr>
<tr>
<td>248</td>
<td>ST116SA</td>
<td>Surface Area of Right Superior Parietal</td>
<td>0.5081</td>
</tr>
<tr>
<td>249</td>
<td>ST73TA</td>
<td>Cortical Thickness Average of Right Caudal Anterior Cingulate</td>
<td>0.5592</td>
</tr>
<tr>
<td>250</td>
<td>ST32TS</td>
<td>Cortical Thickness Standard Deviation of Left Inferior Temporal</td>
<td>0.5337</td>
</tr>
<tr>
<td>251</td>
<td>ST14CV</td>
<td>Volume (Cortical Parcellation) of Left Caudal Anterior Cingulate</td>
<td>0.5246</td>
</tr>
<tr>
<td>252</td>
<td>ST93SA</td>
<td>Surface Area of Right Isthmus Cingulate</td>
<td>0.5006</td>
</tr>
<tr>
<td>253</td>
<td>ST43TA</td>
<td>Cortical Thickness Average of Left Paracentral</td>
<td>0.6069</td>
</tr>
<tr>
<td>254</td>
<td>ST73CV</td>
<td>Volume (Cortical Parcellation) of Right Caudal Anterior Cingulate</td>
<td>0.5090</td>
</tr>
<tr>
<td>255</td>
<td>ST100TS</td>
<td>Cortical Thickness Standard Deviation of Right Pars Triangularis</td>
<td>0.5342</td>
</tr>
<tr>
<td>256</td>
<td>ST59TS</td>
<td>Cortical Thickness Standard Deviation of Left Superior Marginal</td>
<td>0.5673</td>
</tr>
<tr>
<td>257</td>
<td>ST121SA</td>
<td>Surface Area of Right Transverse Temporal</td>
<td>0.5325</td>
</tr>
<tr>
<td>258</td>
<td>ST117SA</td>
<td>Surface Area of Right Superior Temporal</td>
<td>0.5057</td>
</tr>
<tr>
<td>259</td>
<td>ST118SA</td>
<td>Surface Area of Right Supramarginal</td>
<td>0.5202</td>
</tr>
<tr>
<td>260</td>
<td>ST49CV</td>
<td>Volume (Cortical Parcellation) of Left Postcentral</td>
<td>0.6002</td>
</tr>
<tr>
<td>261</td>
<td>ST113CV</td>
<td>Volume (Cortical Parcellation) of Right Rostral Anterior Cingulate</td>
<td>0.5256</td>
</tr>
<tr>
<td>262</td>
<td>ST116CV</td>
<td>Volume (Cortical Parcellation) of Right Superior Parietal</td>
<td>0.6527</td>
</tr>
<tr>
<td>263</td>
<td>ST110TS</td>
<td>Cortical Thickness Standard Deviation of Left Precentral</td>
<td>0.5506</td>
</tr>
<tr>
<td>264</td>
<td>ST51CV</td>
<td>Volume (Cortical Parcellation) of Left Precentral</td>
<td>0.6142</td>
</tr>
<tr>
<td>265</td>
<td>ST55TS</td>
<td>Cortical Thickness Standard Deviation of Left Rostral Middle Frontal</td>
<td>0.5830</td>
</tr>
<tr>
<td>266</td>
<td>ST31SA</td>
<td>Surface Area of Left Inferior Parietal</td>
<td>0.5756</td>
</tr>
<tr>
<td>267</td>
<td>ST121TA</td>
<td>Cortical Thickness Average of Right Transverse Temporal</td>
<td>0.5995</td>
</tr>
<tr>
<td>268</td>
<td>ST54CV</td>
<td>Volume (Cortical Parcellation) of Left Rostral Anterior Cingulate</td>
<td>0.5706</td>
</tr>
<tr>
<td>269</td>
<td>ST116TS</td>
<td>Cortical Thickness Standard Deviation of Right Superior Parietal</td>
<td>0.6006</td>
</tr>
<tr>
<td>270</td>
<td>ST23SA</td>
<td>Surface Area of Left Cuneus</td>
<td>0.5347</td>
</tr>
<tr>
<td>271</td>
<td>ST110CV</td>
<td>Volume (Cortical Parcellation) of Right Precentral</td>
<td>0.6195</td>
</tr>
<tr>
<td>272</td>
<td>ST39SA</td>
<td>Surface Area of Left Medial Orbitofrontal</td>
<td>0.5390</td>
</tr>
<tr>
<td>273</td>
<td>ST48SA</td>
<td>Surface Area of Left Pericalcarine</td>
<td>0.5039</td>
</tr>
<tr>
<td>274</td>
<td>ST43CV</td>
<td>Volume (Cortical Parcellation) of Left Paracentral</td>
<td>0.5205</td>
</tr>
<tr>
<td>275</td>
<td>ST77SV</td>
<td>Volume (WM Parcellation) of Right Cerebellum WM</td>
<td>0.5166</td>
</tr>
<tr>
<td>276</td>
<td>ST120SV</td>
<td>Volume (WM Parcellation) of Right Thalamus</td>
<td>0.5549</td>
</tr>
<tr>
<td>277</td>
<td>ST190SA</td>
<td>Surface Area of Right Inferior Parietal</td>
<td>0.5617</td>
</tr>
<tr>
<td>278</td>
<td>ST62CV</td>
<td>Volume (Cortical Parcellation) of Left Transverse Temporal</td>
<td>0.5541</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>279</td>
<td>ST114CV</td>
<td>Volume (Cortical Parcellation) of RightRostralMiddle-</td>
<td>0.6319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frontal</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>ST23CV</td>
<td>Volume (Cortical Parcellation) of LeftCuneus</td>
<td>0.5023</td>
</tr>
<tr>
<td>281</td>
<td>ST34SA</td>
<td>Surface Area of LeftIsthmusCingulate</td>
<td>0.5296</td>
</tr>
<tr>
<td>282</td>
<td>ST108TS</td>
<td>Cortical Thickness Standard Deviation of RightPostcen-</td>
<td>0.5658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tral</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>ST20SV</td>
<td>Volume (WM Parcellation) of LeftCerebralWM</td>
<td>0.6229</td>
</tr>
<tr>
<td>284</td>
<td>ST82SA</td>
<td>Surface Area of RightCuneus</td>
<td>0.5175</td>
</tr>
<tr>
<td>285</td>
<td>ST51TS</td>
<td>Cortical Thickness Standard Deviation of LeftPrecentral</td>
<td>0.5136</td>
</tr>
<tr>
<td>286</td>
<td>ST99SA</td>
<td>Surface Area of RightMiddleTemporal</td>
<td>0.5725</td>
</tr>
<tr>
<td>287</td>
<td>ST55SA</td>
<td>Surface Area of RightFusiform</td>
<td>0.5894</td>
</tr>
<tr>
<td>288</td>
<td>ST107SA</td>
<td>Surface Area of RightPericalcarine</td>
<td>0.5270</td>
</tr>
<tr>
<td>289</td>
<td>ST110SA</td>
<td>Surface Area of RightPrecentral</td>
<td>0.5316</td>
</tr>
<tr>
<td>290</td>
<td>ST105SA</td>
<td>Surface Area of RightParsOrbitalis</td>
<td>0.5011</td>
</tr>
<tr>
<td>291</td>
<td>ST59SA</td>
<td>Surface Area of LeftSupramarginal</td>
<td>0.5404</td>
</tr>
<tr>
<td>292</td>
<td>ST52SA</td>
<td>Surface Area of LeftPrecuneus</td>
<td>0.5477</td>
</tr>
<tr>
<td>293</td>
<td>ST102CV</td>
<td>Volume (Cortical Parcellation) of RightParacentral</td>
<td>0.5371</td>
</tr>
<tr>
<td>294</td>
<td>ST82CV</td>
<td>Volume (Cortical Parcellation) of RightCuneus</td>
<td>0.5180</td>
</tr>
<tr>
<td>295</td>
<td>ST54SA</td>
<td>Surface Area of LeftRostralAnteriorCingulate</td>
<td>0.5081</td>
</tr>
<tr>
<td>296</td>
<td>ST94SA</td>
<td>Surface Area of RightLateralOccipital</td>
<td>0.5127</td>
</tr>
<tr>
<td>297</td>
<td>ST198SA</td>
<td>Surface Area of RightMedialOrbitofrontal</td>
<td>0.5098</td>
</tr>
<tr>
<td>298</td>
<td>ST114SA</td>
<td>Surface Area of RightRostralMiddleFrontal</td>
<td>0.5296</td>
</tr>
<tr>
<td>299</td>
<td>ST76SV</td>
<td>Volume (WM Parcellation) of RightCerebellumCortex</td>
<td>0.5430</td>
</tr>
<tr>
<td>300</td>
<td>ST50SA</td>
<td>Surface Area of LeftPosteriorCingulate</td>
<td>0.5143</td>
</tr>
<tr>
<td>301</td>
<td>ST38SA</td>
<td>Surface Area of LeftLingual</td>
<td>0.5137</td>
</tr>
<tr>
<td>302</td>
<td>ST57CV</td>
<td>Volume (Cortical Parcellation) of LeftSuperiorParietal</td>
<td>0.6124</td>
</tr>
<tr>
<td>303</td>
<td>ST35SA</td>
<td>Surface Area of LeftLateralOccipital</td>
<td>0.5199</td>
</tr>
<tr>
<td>304</td>
<td>ST120SA</td>
<td>Surface Area of LeftInsula</td>
<td>0.5062</td>
</tr>
<tr>
<td>305</td>
<td>ST58SA</td>
<td>Surface Area of LeftSuperiorTemporal</td>
<td>0.5312</td>
</tr>
<tr>
<td>306</td>
<td>ST35CV</td>
<td>Volume (Cortical Parcellation) of LeftLateralOccipital</td>
<td>0.5843</td>
</tr>
<tr>
<td>307</td>
<td>ST109SA</td>
<td>Surface Area of RightPosteriorCingulate</td>
<td>0.5121</td>
</tr>
<tr>
<td>308</td>
<td>ST36SA</td>
<td>Surface Area of LeftLateralOrbitofrontal</td>
<td>0.5149</td>
</tr>
<tr>
<td>309</td>
<td>ST17SV</td>
<td>Volume (WM Parcellation) of LeftCerebellumCortex</td>
<td>0.5296</td>
</tr>
<tr>
<td>310</td>
<td>ST55SA</td>
<td>Surface Area of LeftRostralMiddleFrontal</td>
<td>0.5158</td>
</tr>
<tr>
<td>311</td>
<td>ST195SA</td>
<td>Surface Area of RightLateralOrbitofrontal</td>
<td>0.5077</td>
</tr>
<tr>
<td>312</td>
<td>ST115SA</td>
<td>Surface Area of RightSuperiorFrontal</td>
<td>0.5161</td>
</tr>
<tr>
<td>313</td>
<td>ST130SA</td>
<td>Surface Area of RightInsula</td>
<td>0.5121</td>
</tr>
<tr>
<td>314</td>
<td>ST10CV</td>
<td>Volume (Cortical Parcellation) of Icv</td>
<td>0.5298</td>
</tr>
<tr>
<td>315</td>
<td>ST56SA</td>
<td>Surface Area of LeftSuperiorFrontal</td>
<td>0.5203</td>
</tr>
<tr>
<td>316</td>
<td>EICV</td>
<td>Estimated Intracranial Volume</td>
<td>0.5264</td>
</tr>
<tr>
<td>317</td>
<td>ST86SA</td>
<td>Surface Area of RightHemisphere</td>
<td>0.5136</td>
</tr>
<tr>
<td>318</td>
<td>ST27SA</td>
<td>Surface Area of LeftHemisphere</td>
<td>0.5119</td>
</tr>
</tbody>
</table>
Ranking of clinical features using *Minimum Redundancy and Maximum Relevance* (mRMR) method

Table 9. Ranking of clinical features using mRMR method

<table>
<thead>
<tr>
<th>Ranking mRmR</th>
<th>Código</th>
<th>Nombre variables</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CDRGLOBAL</td>
<td>Global Clinical Dementia Rating</td>
<td>0.9777</td>
</tr>
<tr>
<td>2</td>
<td>PTAGEDIAGNOSTIC</td>
<td>Edad del Paciente</td>
<td>0.5236</td>
</tr>
<tr>
<td>3</td>
<td>PTEDUCAT</td>
<td>Años de educación del paciente</td>
<td>0.5811</td>
</tr>
<tr>
<td>4</td>
<td>PTGENDER</td>
<td>Género</td>
<td>0.5232</td>
</tr>
<tr>
<td>5</td>
<td>PTHAND</td>
<td>Tipo de escritura (Handedness)</td>
<td>0.5081</td>
</tr>
<tr>
<td>6</td>
<td>MMSCORE</td>
<td>Mini Mental Examination Score</td>
<td>0.8681</td>
</tr>
</tbody>
</table>